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Overview

This deck of slides goes over the classical linear regression model and
the tobit model from a maximum-likelihood perspective.

The relevant sections in Hansen are H5.5 and H27.1-H27.6.
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Normal model

The classical linear regression model is

Y |X ∼ N(X ′β, σ2).

The density of Y conditional on X is

1
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The likelihood function for this problem is
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Optimization

The log-likelihood is

ℓn(β, σ2) = −n

2 log(2π) − n

2 log(σ2) − 1
2

n∑
i=1

(Yi − X ′
iβ)2

σ2 .

Here, the first term is an inessential constant.

The first-order conditions are

∂ℓn(β, σ2)
∂β

=
n∑

i=1

Xi(Yi − X ′
iβ)

σ
= 0,

and
∂ℓn(β, σ2)

∂σ2 = 1
2

(∑n
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iβ)2

σ4 − n

σ2

)
= 0.
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We can solve these equations sequentially, giving

β̂mle =
(

n∑
i=1

XiX
′
i

)−1( n∑
i=1

XiYi

)
,

which corresponds to the OLS estimator, and

σ̂2
mle = 1

n

n∑
i=1

(Yi − X ′
iβ̂mle)2,

which is again standard (albeit not degree-of-freedom corrected) from
regression analysis.
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Censoring

A variable Y ∗ is left-censored at zero when we observe

Y = max(Y ∗, 0).

Right censoring is analogous and leads to top-coded variables instead.

Take
Y ∗ = X ′β + e, e|X ∼ N(0, σ2).

Then censoring below zero leads to Y |X having a mass point at zero.

Not obvious how to construct an estimator for β and/or σ2 here.
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Ignoring censoring

A naive approach to ‘dealing’ with censoring is to retain only data that
is not censored.

However,

E(Y ∗|X, Y ∗ > 0) = X ′β + E(e|X, Y ∗ > 0) = X ′β + E(e|X, e > −X ′β)

and by normality,

E(e|X, e > −X ′β) = +σ
ϕ(−X ′β/σ)

1 − Φ(−X ′β/σ) = σ
ϕ(X ′β/σ)
Φ(X ′β/σ) ,

so that
E(Y ∗|X, Y ∗ > 0) = X ′β + σ

ϕ(X ′β/σ)
Φ(X ′β/σ) ̸= X ′β

7/ 11



Here we have used that, for any (a, u) with a < u,

P(e ≤ u|e > a) = P(e ≤ u) − P(e ≤ a)
1 − P(e ≤ a) = Φ(u/σ) − Φ(a/σ)

1 − Φ)(a/σ) ,

so that the conditional density is

(1/σ) ϕ(u/σ)
1 − Φ(a/σ) ,

to obtain

E(e|e > a) =
∫∞

a
(u/σ)ϕ(u/σ) du

1 − Φ(a/σ) = σ
ϕ(a/σ)

1 − Φ(a/σ) .

The last step uses the change of variable z = u/σ and the fact that
ϕ′(z) = −zϕ(z).

8/ 11



The likelihood function

We have that

P(Y = 0|X) = P(Y ∗ < 0|X) = Φ(−X ′β/σ)

while, for any y > 0

P(Y ≤ y|X) = P(Y = 0|X) + P(Y ≤ y|X, Y > 0)P(Y > 0|X)

with

P(Y ≤ y|X, Y > 0)P(Y > 0|X) = P(Y ∗ ≤ y|X = x) − P(Y ∗ ≤ 0|X)

so that for y > 0

P(Y ≤ y|X) = P(Y ∗ ≤ y|X) = Φ
(

y − X ′β

σ

)
with density

1
σ

ϕ

(
y − X ′β

σ

)
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The likelihood function thus is

Ln(β, σ2) =
n∏

i=1
Φ
(

−X ′
iβ

σ

){Yi=0} ( 1
σ

ϕ

(
Yi − X ′

iβ

σ

)){Yi>0}

which has a probit component and a normal-regression component.

A useful reparametrization has γ = β/σ and δ = 1/σ, which aids with
numerical optimisation.

In general, the likelihood function is invariant to one-to-one
reparametrizations.
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Marginal effects

In the tobit model β captures average partial effects of a change in X
on Y ∗.

The marginal effect on Y is nonlinear. We have

∂E(Y |X)
∂X

= ∂E(Y |X, Y > 0)P(Y > 0|X)
∂X

.

By an application of the chain rule, using the calculations from above,
we obtain

β Φ
(

X ′β

σ

)
.

The average marginal effect, for example, then is

E
(

β Φ
(

X ′β

σ

))
.
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