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Overview

This deck of slides goes over the classical linear regression model and
the tobit model from a maximum-likelihood perspective.

The relevant sections in Hansen are H5.5 and H27.1-H27.6.
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Normal model

The classical linear regression model is
Y|X ~ N(X'B3,0%).

The density of Y conditional on X is

1, (ym) IS (1(YX’B)2>.

o 2 o2
The likelihood function for this problem is

j 1 < 1(YX’,8)2)'

2 o2
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Optimization

The log-likelihood is

n

1 Y, - X
£a(6,0%) =~ log(2m) 5 log(e") ~ 5 3 iz X2
Here, the first term is an inessential constant.
The first-order conditions are
éw "X (Y - X
Z ﬁ) 07
=1
and ) N ,
On(B,0) _ 1 (LI (i= X9 _ n\ _,
Oo? 2 o4 o2 '
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We can solve these equations sequentially, giving

n -1 n
Brate = (Z XZ-X;> (Z Xﬂ@) :
i=1 i=1
which corresponds to the OLS estimator, and

R 1 ¢ 5
O—rznlc = 5 Z(Y; - Xz(ﬁmlc)zv

=1

which is again standard (albeit not degree-of-freedom corrected) from
regression analysis.
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Censoring

A variable Y* is left-censored at zero when we observe
Y = max(Y™,0).
Right censoring is analogous and leads to top-coded variables instead.

Take
Y*=X'B+e, e]X ~ N(0,0?).

Then censoring below zero leads to Y| X having a mass point at zero.

Not obvious how to construct an estimator for 3 and/or o2 here.
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Ignoring censoring

A naive approach to ‘dealing’ with censoring is to retain only data that
is not censored.

However,
E(Y*X,Y*>0)=X'B+E(eX,Y*">0)=X'B+E(e|]X,e > —X'p3)
and by normality,

Ay ¢(=X"'B/0) _ _$(X'B/o)
E(6|X7e>_Xﬁ)_+01—<l>(—X’ﬁ/a)_U<I>(X’6/U)7

so that X
E(Y*|X,Y* >0) = X8+ U?(X’%?) £ X'B
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Here we have used that, for any (a,u) with a < u,

Ple <u)—Ple <a) _ b(u/o) — P(ajo)
1-Ple<a) 1-®)(a/o)

Ple < ule > a) =

so that the conditional density is

(1/0) é(u/a)
1—®(a/o)’
to obtain
[Pw/o)e(u/o)du  d(afo)
E(ele > a) = T~ ®(a/o) - 01 ~o(ale

The last step uses the change of variable z = u/o and the fact that

¢'(2) = —2¢(2).
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The likelihood function

We have that
P(Y = 0|X) =P(Y* < 0|X) = &(—X'B/0)
while, for any y > 0
P(Y <y|X)=P(Y =0/X) +P(Y < y|X,Y > 0)P(Y > 0|X)
with
P(Y <y|X,Y > 0)P(Y > 0|X) =P(Y* <y|X =2z) - P(Y* <0/X)

so that for y > 0

MYSyM5=PW*§yM5=¢(

1¢<y—X6>
g ag

y—Xﬁ)

g

with density
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The likelihood function thus is

n X/ {Y;=0} 1 Y; o X,ﬂ {Y;>0}
-1 (=7) (e(5))

Pl o o

which has a probit component and a normal-regression component.

A useful reparametrization has v = /0 and é = 1/, which aids with
numerical optimisation.

In general, the likelihood function is invariant to one-to-one
reparametrizations.
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Marginal effects

In the tobit model 3 captures average partial effects of a change in X
on Y*.

The marginal effect on Y is nonlinear. We have

OE(Y|X) OE(Y|X,Y >0)P(Y > 0|X)

0X 0X

By an application of the chain rule, using the calculations from above,
we obtain =
o ( 8 ) .
g

The average marginal effect, for example, then is

=( (%))
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